Field emission and strain engineering of electronic properties in boron nitride nanotubes.

نویسندگان

  • Hessam M Ghassemi
  • Chee Hui Lee
  • Yoke Khin Yap
  • Reza S Yassar
چکیده

The electrical properties of boron nitride (BN) nanostructures, particularly BN nanotubes (NTs), have been studied less in comparison to the counterpart carbon nanotubes. The present work investigates the field emission (FE) behavior of BNNTs under multiple cycles of FE experiments and demonstrates a strain-engineering pathway to tune the electronic properties of BNNTs. The electrical probing of individual BNNTs were conducted inside a transmission electron microscope (TEM) using an in situ electrical holder capable of applying a bias voltage of up to 110 V. Our results indicate that in the first cycle a single BNNT can exhibit the current density of ∼1 mA cm(-2) at 110 V and the turn-on voltage of 325 V μm(-1). However, field emission properties reduced considerably in subsequent cycles. Real-time imaging revealed the structural degradation of individual BNNTs during FE experiments. The electromechanical measurements show that the conductivity of BNNTs can be tuned by means of mechanical straining. The resistance of individual BNNTs reduced from 2000 to 769 MΩ and the carrier concentration increased from 0.35 × 10(17) to 1.1 × 10(17) cm(-3) by straining the samples up to 2.5%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theoretical comparison of thermodynamic parameters, NMR analysis, electronic properties of Boron Nitride and Aluminum Nitride nanotubes

In this research, geometrical structures of armchair single walled boron nitride nanotube (SWBNNT) and armchair single walled aluminum nitride nanotube (SWAlNNT) were optimized by Density Functional Theory (DFT) in the gas phase, both having the same length of 5 angstrom and n=9, m=9. B3LYP/6-31G* level of theory have been used to determine and compare electronic properties, n...

متن کامل

Theoretical comparison of thermodynamic parameters, NMR analysis, electronic properties of Boron Nitride and Aluminum Nitride nanotubes

In this research, geometrical structures of armchair single walled boron nitride nanotube (SWBNNT) and armchair single walled aluminum nitride nanotube (SWAlNNT) were optimized by Density Functional Theory (DFT) in the gas phase, both having the same length of 5 angstrom and n=9, m=9. B3LYP/6-31G* level of theory have been used to determine and compare electronic properties, n...

متن کامل

Modulating Band Gap and HOCO/LUCO Energy of Boron-Nitride Nanotubes under a Uniform External Electric Field

In this study, spectroscopic properties of the single-walled boron-nitride nanotube (SWBNNT) –a semiconductor channel in molecular diodes and molecular transistors–have been investigated under field-free and various applied electric fields by first principle methods.Our analysis shows that increasing the electric field in boron-nitride nanotube (BNNT) decreases the Highest Occupied Crystal Orbi...

متن کامل

Quantum mechanical investigation of 4-hydroxy phenyl azobenzene adsorption on the boron nitride nanotubes

In this study, the adsorption of 4-hydroxy phenyl-azobenzene on the surface of (4, 0) zigzag open-end boron nitride nanotube (BNNT) has been investigated by quantum calculations. In order to find the preferred adsorption site, different positions and orientations were considered. The impacts of donor-acceptor electron delocalization on the structural and electronic properties and reactivity of ...

متن کامل

Electron states in boron nitride nanocones

We apply first-principles calculations to study the electronic structure of boron nitride nanocones with disclinations of different angles θ = nπ/3. Nanocones with odd values of n present antiphase boundaries that cause a reduction of the work function of the nanocones, relative to the bulk BN value, by as much as 2 eV. In contrast, nanocones with even values of n do not have such defects and p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 23 10  شماره 

صفحات  -

تاریخ انتشار 2012